Abstract

ABSTRACTKinetic model of MBE growth on vicinal surface is investigated. The model includes step propagation, nucleation and growth of islands on the terraces and Schwoebel barrier at descending step edges as -well. By numerical solution of kinetic rate equations for growth on stepped surface, adatom and island density profiles across a terrace are obtained. With using simple criterion for growth mode transition the "phase diagram" of growth modes in parametric space γ–β is constructed, γ∼J/D and β∼tan-2φ, where J is the atomic flux, D is the surface diffusion coefficient and φ is the substrate miscut angle. The transition curve in the γ–β plane separating step flow mode region from the mixed (step-flow+nucleation) growth mode region is well describded by a simple equation γ=A/β3 where constant A=10 and 100 with and without Schwoebel effect. The relations for critical terrace width (miscut angle) and transition temperature are derived and it is shown that these relations are in fairly well agreement with available experimental data on the MBE growth of GaAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.