Abstract

Metabolic pathways of energy production play an essential role as a function of cells. It is well recognized that the differentiation state of stem cells is highly associated with their metabolic profile. Therefore, visualization of the energy metabolic pathway makes it possible to discriminate the differentiation state of cells and predict the cell potential for reprogramming and differentiation. However, at present, it is technically difficult to directly assess the metabolic profile of individual living cells. In this study, we developed an imaging system of cationized gelatin nanospheres (cGNS) incorporating molecular beacons (MB) (cGNSMB) to detect intracellular pyruvate dehydrogenase kinase 1 (PDK1) and peroxisome proliferator-activated receptor γ, coactivator-1α (PGC-1α) mRNA of key regulators in the energy metabolism. The prepared cGNSMB was readily internalized into mouse embryonic stem cells, while their pluripotency was maintained. The high level of glycolysis in the undifferentiated state, the increased oxidative phosphorylation over the spontaneous early differentiation, and the lineage-specific neural differentiation were visualized based on the MB fluorescence. The fluorescence intensity corresponded well to the change of extracellular acidification rate and the oxygen consumption rate of representative metabolic indicators. These findings indicate that the cGNSMB imaging system is a promising tool to visually discriminate the differentiation state of cells from energy metabolic pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call