Abstract

A new generation of "molecular basket" sorbents (MBS) has been developed by the optimum combination of the nanoporous material and CO(2)/H(2)S-philic polymer sorbent to increase the accessible sorption sites for CO(2) capture from flue gas (Postdecarbonization), and for CO(2) and H(2)S separation from the reduced gases, such as synthesis gas, reformate (Predecarbonization), natural gas, coal/biomass gasification gas, and biogas. The sorption capacity of 140 mg of CO(2)/g of sorb was achieved at 15 kPa CO(2) partial pressure, which shows superior performance in comparison with other known sorbents. In addition, an exceptional dependence of MBS sorption performance on temperature for CO(2) and H(2)S was found and discussed at a molecular level via the computational chemistry approach. On the basis of the fundamental understanding of MBS sorption characteristics, an innovative sorption process was proposed and demonstrated at the laboratory scale for removing and recovering CO(2) and H(2)S, respectively, from a model gas. The present study provides a new approach for development of the novel CO(2)/H(2)S sorbents and may have a major impact on the advance of science and technology for CO(2)/H(2)S capture and separation from various gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call