Abstract

High frequency microelectronic and optoelectronic device packaging requires the use of substrate and encapsulation materials having a low dielectric constant, low dielectric loss and high volume resistivity. Most packaging materials are polymer-ceramic composites. A clear understanding of the broadband dielectric properties of composite materials is thus of great current importance for the effective development of high frequency packaging materials and optimized package design. Toward this goal, a general framework for understanding the dielectric properties of packaging materials was recently developed in which the dielectric constant of polymer-ceramic composite materials is characterized by the electrical properties of the polymer phase, the filler phase and an interphase region within the composite system. However, for this framework to be a viable tool for tailoring the dielectric properties of packaging materials, one must understand the dielectric properties of the polymer-filler interphase region, which represents a region of polymer surrounding and bonded to the surface of each filler particle having unique dielectric and physical characteristics. This work presents a model to explain and predict the dielectric properties of the composite interphase region based on dipole polarization theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.