Abstract

Antibiotic resistance is a significant threat to human health, with natural products remaining the best source for new antimicrobial compounds. Antimicrobial peptides (AMPs) are natural products with great potential for clinical use as they are small, amenable to customization, and show broad‐spectrum activities. Lynronne‐1 is a promising AMP identified in the rumen microbiome that shows broad‐spectrum activity against pathogens such as methicillin‐resistant Staphylococcus aureus and Acinetobacter baumannii. Here we investigated the structure of Lynronne‐1 using solution NMR spectroscopy and identified a 13‐residue amphipathic helix containing all six cationic residues. We used biophysical approaches to observe folding, membrane partitioning and membrane lysis selective to the presence of anionic lipids. We translated our understanding of Lynronne‐1 structure to design peptides which varied in the size of their hydrophobic helical face. These peptides displayed the predicted continuum of membrane‐lysis activities in vitro and in vivo, and yielded a new AMP with 4‐fold improved activity against A. baumannii and 32‐fold improved activity against S. aureus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.