Abstract

NPP4 is a type I extracellular membrane protein on brain vascular endothelium inducing platelet aggregation via the hydrolysis of Ap3A, whereas NPP1 is a type II extracellular membrane protein principally present on the surface of chondrocytes that regulates tissue mineralization. To understand the metabolism of purinergic signals resulting in the physiologic activities of the two enzymes, we report the high resolution crystal structure of human NPP4 and explore the molecular basis of its substrate specificity with NPP1. Both enzymes cleave Ap3A, but only NPP1 can hydrolyze ATP. Comparative structural analysis reveals a tripartite lysine claw in NPP1 that stabilizes the terminal phosphate of ATP, whereas the corresponding region of NPP4 contains features that hinder this binding orientation, thereby inhibiting ATP hydrolysis. Furthermore, we show that NPP1 is unable to induce platelet aggregation at physiologic concentrations reported in human blood, but it could stimulate platelet aggregation if localized at low nanomolar concentrations on vascular endothelium. The combined studies expand our understanding of NPP1 and NPP4 substrate specificity and range and provide a rational mechanism by which polymorphisms in NPP1 confer stroke resistance.

Highlights

  • Nucleotide pyrophosphatase/phosphodiesterases (NPPs) metabolize extracellular purinergic signals

  • We show that NPP1 is unable to induce platelet aggregation at physiologic concentrations reported in human blood, but it could stimulate platelet aggregation if localized at low nanomolar concentrations on vascular endothelium

  • Our studies describe the molecular basis of substrate discrimination by NPP4 and NPP1, provide insight into their physiologic roles governing bone mineralization and platelet aggregation, and provide an apparent mechanism by which NPP1 polymorphisms associated with stroke protection may act

Read more

Summary

Background

Nucleotide pyrophosphatase/phosphodiesterases (NPPs) metabolize extracellular purinergic signals. To understand the metabolism of purinergic signals resulting in the physiologic activities of the two enzymes, we report the high resolution crystal structure of human NPP4 and explore the molecular basis of its substrate specificity with NPP1. Both enzymes cleave Ap3A, but only NPP1 can hydrolyze ATP. Polymorphisms in NPP1 have been identified that confer stroke protection in pediatric patients with sickle cell anemia [49] Both hemostasis and bone development are essential finely balanced physiologic processes that are regulated by the extracellular metabolism of purinergic signals. Our studies describe the molecular basis of substrate discrimination by NPP4 and NPP1, provide insight into their physiologic roles governing bone mineralization and platelet aggregation, and provide an apparent mechanism by which NPP1 polymorphisms associated with stroke protection may act

EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call