Abstract

Targeting of programmed cell death 1 (PD-1) with monoclonal antibodies to block the interaction with its ligand PD-L1 has been successful in immunotherapy of multiple types of cancer, and their mechanism involves the restoration of the T-cell immune response. April 2021, the US FDA approved dostarlimab, a therapeutic antibody against PD-1, for the treatment of endometrial cancer. Here, we report the crystal structure of the extracellular domain of PD-1 in complex with the dostarlimab Fab at the resolution of 1.53 Å. Although the interaction between PD-1 and dostarlimab involves mainly the residues within the heavy chain of dostarlimab, the steric occlusion of PD-L1 binding is primarily contributed by the light chain. Dostarlimab induces conformational rearrangements of the BC, C’D and FG loops of PD-1 to achieve a high affinity. Significantly, the residue R86 within the C’D loop of PD-1 plays a critical role for dostarlimab binding by occupying the concave surface on the heavy chain via multiple interactions. This high-resolution structure can provide helpful information for designing improved anti-PD-1 biologics or effective combination strategies for cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.