Abstract
Prostaglandin D2 receptor 2 (DP2) is an important anti-inflammatory and antiallergic drug target. While inactive DP2 structures are known, its activation mechanisms and biased signaling remain unclear. Here, we report cryo-EM structures of an apo DP2-Gi complex, a DP2-Gi complex bound to the endogenous ligand Prostaglandin D2 (PGD2), and a DP2-Gi complex bound to indomethacin, an arrestin-biased ligand, at resolutions of 2.5 Å, 2.8Å, and 2.3 Å, respectively. These structures reveal a distinct binding pose of PGD2 and indomethacin and provide key insights into receptor activation and transducer coupling. Combining the structural data with functional studies, we uncover the molecular basis for biased signaling of indomethacin toward β-arrestin over G proteins. Notably, a phospholipid binding site was identified at the DP2-G protein interface that modulates DP2-G protein interactions. Together, our functional and structural findings provide insights into DP2 activation, biased signaling, drug interactions, and lipid regulation, enabling rational design of safer antiallergy therapeutics targeting this key immune receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.