Abstract

Some clinical isolates of Mycobacterium fortuitum are naturally resistant to macrolides, e.g. clarithromycin. Thus, the aim of this study was to identify the gene(s) conferring this resistance. M. fortuitum ATCC 6841T DNA libraries were screened for plasmids that complemented the macrolide-susceptible phenotype of Mycobacterium smegmatis variant ermKO4 [erm(38)-negative]. Macrolide-resistant M. smegmatis transformants were selected on agar containing 128 mg/L erythromycin. Genetic complementation identified an M. fortuitum rRNA methylase gene, termed erm(39), 69% identical to erm(38) of M. smegmatis. In addition, erm(39) was found to be in the same chromosomal location as erm(38) in their respective hosts. Like erm(38), erm(39) conferred resistance (MIC >128 mg/L) to macrolide-lincosamide (ML) agents, but not to streptogramin B. Analysis of erm gene expression in M. fortuitum showed that ML agents increased erm(39) RNA levels, reaching a steady state level approximately 20-fold higher than baseline. Screening of 32 M. fortuitum clinical isolates by PCR showed that all were positive for erm(39), irrespective of clarithromycin susceptibility. A majority of clarithromycin-susceptible (MIC < or = 2 mg/L) isolates were postulated to carry a disabled erm(39) gene as they had a GTG-->CTG mutation in the putative initiation codon of the erm(39) gene. The similarity of the erm genes of M. smegmatis and M. fortuitum suggests that they were inherited from a common ancestor. Although the clinical impact of erm(39) on the therapeutic utility of clarithromycin is unclear, induction of this gene is consistent with the trailing end-points commonly seen during susceptibility testing of M. fortuitum isolates against macrolides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call