Abstract

When activated skeletal muscles are stretched at slow velocities, force increases in two phases: (i) a fast increase, and (ii) a slow increase. The transition between these phases is commonly associated with the mechanical detachment of cross-bridges from actin. This phenomenon is referred to as force enhancement during stretch. After the stretch, force decreases and reaches steady-state at levels that are higher than the force produced at the corresponding length during purely isometric contractions. This phenomenon is referred to as residual force enhancement. The mechanisms behind the increase in force during and after stretch are still a matter of debate, and have physiological implications as human muscles perform stretch contractions continuously during daily activity. This paper briefly reviews the potential mechanisms to explain stretch forces, including an increased number of cross-bridges attached to actin, an increased strain in cross-bridges upon stretch, the influence of passive elements upon activation and sarcomere length non-uniformities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.