Abstract

Alpha-1-antitrypsin (A1AT) deficiency is an autosomal hereditary disorder associated with a major reduction in serum A1AT levels. Clinically, A1AT deficiency is associated with emphysema in adults and, less commonly, liver disease in neonates. A1AT is a 52-kDa, 394-amino acid, single-chain glycoprotein normally present in serum at 150 to 350 mg/dl. The A1AT gene, composed of seven exons dispersed over 12 kb of chromosomal segment 14q31-32.3, is expressed in heptocytes and mononuclear phagocytes. The A1AT protein, a member of the class of protease inhibitor proteins known as serpins (serine protease inhibitors), is a globular molecule composed of nine alpha-helices and three beta-pleated sheets. The major function of A1AT is to inhibit neutrophil elastase; A1AT does so through an active site centered around Met358 contained within an external stressed loop on the surface of the molecule. A1AT is a highly pleomorphic protein with greater than 75 variants determined at the protein and/or gene level. These variants can be categorized into four groups according to their serum A1AT level and function: normal, deficient, dysfunctional, and absent. There are two important salt bridges within the A1AT molecule (Glu342—Lys290; Glu263—Lys367); a mutation in the A1AT gene causing disruption of either salt bridge causes distinct molecular pathology resulting in reduced serum A1AT levels. Clinically relevant variants can be distinguished by a combination of isoelectric focusing of serum, restriction fragment length analysis of genomic DNA, oligonucleotide probes, and direct sequencing of the variant A1AT genes. Alpha-1-antitrypsin (A1AT) deficiency is an autosomal hereditary disorder associated with a major reduction in serum A1AT levels. Clinically, A1AT deficiency is associated with emphysema in adults and, less commonly, liver disease in neonates. A1AT is a 52-kDa, 394-amino acid, single-chain glycoprotein normally present in serum at 150 to 350 mg/dl. The A1AT gene, composed of seven exons dispersed over 12 kb of chromosomal segment 14q31-32.3, is expressed in heptocytes and mononuclear phagocytes. The A1AT protein, a member of the class of protease inhibitor proteins known as serpins (serine protease inhibitors), is a globular molecule composed of nine alpha-helices and three beta-pleated sheets. The major function of A1AT is to inhibit neutrophil elastase; A1AT does so through an active site centered around Met358 contained within an external stressed loop on the surface of the molecule. A1AT is a highly pleomorphic protein with greater than 75 variants determined at the protein and/or gene level. These variants can be categorized into four groups according to their serum A1AT level and function: normal, deficient, dysfunctional, and absent. There are two important salt bridges within the A1AT molecule (Glu342—Lys290; Glu263—Lys367); a mutation in the A1AT gene causing disruption of either salt bridge causes distinct molecular pathology resulting in reduced serum A1AT levels. Clinically relevant variants can be distinguished by a combination of isoelectric focusing of serum, restriction fragment length analysis of genomic DNA, oligonucleotide probes, and direct sequencing of the variant A1AT genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call