Abstract

d-Penicillamine (d-Pen) is a sulfur compound used in the management of rheumatoid arthritis, Wilson's disease (WD), and alcohol dependence. Many side effects are associated with its use, particularly after long-term treatment. However, the molecular basis for such side effects is poorly understood. Based on the well-known oxidase activity of hemoproteins and the participation of catalase in cellular H2O2 redox signaling, we posit that d-Pen could inactivate catalase, thus disturbing H2O2 levels. Herein, we report on the molecular basis that could partly explain the side effects associated with this drug compound, and we demonstrate that it induces the formation of compound II, a temporarily inactive state of the enzyme, through two distinct mechanisms. Initially, d-Pen reacts with native catalase and/or iron metal ions, used to mimic non-heme iron overload observed in long-term treated WD patients, to generate thiyl radicals. These radicals partake in a futile redox cycle, thus producing superoxide radical anions O2•- and hydrogen peroxide H2O2. Then, either H2O2 unexpectedly reacts with reduced CAT-Fe(II) to produce compound II or both aforementioned reactive oxygen species intervene in compound II generation through compound I formation and then reduction. These findings support the evidence that d-Pen could perturb H2O2 redox homeostasis through transient but recurring catalase inactivation, which may in part rationalize some deleterious effects observed with this therapeutic agent, as discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call