Abstract

At least three stages in the intrathymic development of pre-T cells are demarcated by differences in the competence to express the interleukin-2 (IL-2) gene as an acute response to stimulation. IL-2 inducibility appears to be acquired relatively early, prior to T-cell receptor (TcR) gene rearrangement. It is then abrogated during the stage when cells are subject to positive and negative selection, i.e., the fate determination processes that select cells for maturation or death. IL-2 inducibility finally reappears in mature classes of thymocytes that have undergone positive selection. To provide a basis for a molecular explanation of these developmental transitions, we have examined the representation in different thymocyte subsets of a set of DNA-binding proteins implicated in IL-2 gene regulation. As the DNA-binding activities of many factors are elicited only by inductive stimuli, the cells were cultured in the presence or absence of the calcium ionophore A23187 and phorbol ester. Our results separate these factors into four regulatory classes: (i) constitutive factors, such as Oct-1 and probably Sp1, that are expressed in thymocytes at all stages; (ii) inducible factors, such as NF-kappa B and complexes binding to the region of a CD28 response element, that can be activated in all thymocytes, including those cells (CD4+ CD8+ TcRlow) that can undergo selection; (iii) inducible factors, such as NF-AT and AP-1, that can be activated in mature (CD4+ CD8- TcRhigh) and immature (CD4- CD8- TcR-) thymocytes alike but not in the transitional stages when the cells (CD4+ CD8+ TcRlow) are subject to selection; and (iv) a factor containing CREB, which can be activated in thymocytes of all developmental stages by culture but does not require specific induction. These results verify that inducible transcription factors are targets of intrathymic developmental change. They also identify NF-AT and AP-1 as factors that are particularly sensitive to the mechanism altering thymocyte responses during the stages when thymocytes may undergo positive and negative selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call