Abstract
Plant Cysteine Oxidases (PCOs) play important roles in controlling the stability of Group VII ethylene response factors (ERF-VIIs) via Arg/N-degron pathway through catalyzing the oxidation of their N-Cys for subsequent Arginyl-tRNA--protein transferase 1 (ATE1) mediated arginine installation. Here we presented the crystal structures of PCO2, PCO4, and PCO5 from Arabidopsis thaliana (AtPCOs) and examined their in vitro activity by Mass spectrometry (MS). On the basis of Tris-bound AtPCO2, we modelled the structure of Cys-bound AtPCO2 and identified key AtPCO2 residues involved in N-Cys recognition and oxidation. Alanine substitution of potential N-Cys interaction residues impaired the activity of AtPCO5 remarkably. The structural research, complemented by mutagenesis and MS experiments, not only uncovers the substrate recognition and catalytic mode by AtPCOs, but also sheds light on the future design of potent inhibitors for plant cysteine oxidases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.