Abstract

Backgrounds underlying age-related bone loss can be classified into two categories: systemic abnormality and osteoblast dysfunction. The former includes insufficiency of vitamin D or estrogen, causing a negative balance of calcium metabolism. We propose the contribution of an aging-suppressing gene, klotho, as a novel systemic factor, as a mouse deficient in the klotho gene exhibits multiple aging phenotypes including osteopenia with a low bone turnover. As a factor intrinsic to osteoblasts, we investigated the role of PPARgamma, a key regulator of adipocyte differentiation, based on the facts that osteoblasts and adipocytes share a common progenitor. Heterozygous PPARgamma-deficient mice exhibited high bone mass by stimulating osteoblastogenesis from bone marrow progenitors, and this effect became prominent with aging, indicating involvement of PPARgamma-dependent bone formation in the pathophysiology of age-related bone loss. The local environment of osteoblasts is mainly controlled by cytokines/growth factors, among which insulin-like growth factor-I (IGF-I) is the most possible candidate whose production and activity are decreased with aging. Bone phenotypes of deficient mice of insulin receptor substrates (IRS-1 and IRS-2), essential molecules for intracellular signaling of IGF-I, revealed that IRS-1 is essential to maintain bone turnover by up-regulating anabolic and catabolic functions of osteoblasts, while IRS-2 is needed to keep the predominance of the anabolic function over the catabolic function. A next task ahead of us will be to elucidate the network system of these factors underlying age-related osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.