Abstract

AbstractAuxetics are materials characterized by a negative Poisson's ratio (NPR), an uncommon mechanical behavior corresponding to a transversal deformation tendency opposite to the traditional materials. Here, the first example of a synthetic molecular auxetic polymer obtained by embedding a conformationally expandable cavitand as a crosslinker into a rigid polymer of intrinsic microporosity (PIM) is presented. The rigidity and microporosity of the polymeric matrix are pivotal to maximizing the expansion effect of the cavitand that, under mechanical stress, can assume two different conformations: a compact vase one and an extended kite form. The auxetic behavior and the corresponding NPR of the proposed material is predicted by a specific micromechanical model that considers the cavitand volume expansion ratio, the fraction of the cavitand crosslinker in the polymer, and the mechanical characteristics of the polymer backbone. The reversible auxetic behavior of the material is experimentally verified via the digital image correlation technique performed during the mechanical tests on films obtained by blending the auxetic crosslinked polymer with pristine PIM. Two specific control experiments prove that the mechanically driven conformational expansion of the cavitand crosslinker is the sole responsible for the observed NPR of the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.