Abstract

In this study, a low-molecular-weight organogelator derived from (l)-amino acids was designed and synthesized. Gelation assays using (l)-amino acid derivatives were performed to confirm the gelation ability, which was found to be high in several compounds. The (l)-alanine derivatives were determined to be excellent gelators, forming good gels even when smaller amounts were added. These results led to a library of amino acid-derived organogelators. In addition, the thermal properties of the (l)-alanine derivatives with high gelation performance were measured. Differential scanning calorimetry measurements revealed that the thermal stability of the gels could be controlled by changing the gelator concentration. The surface states of the obtained gels were observed by field-emission scanning electron microscopy and atomic force microscopy measurements, which confirmed the structure of the self-molecular aggregates. Self-molecular aggregates were observed to be helical or sheet-like, and the gels were constructed by forming aggregates by self-molecular recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.