Abstract

Carbon dots (CDs) have become one of most promising fluorescent materials in recent days, because of their promising photoluminescence and photocatalytic properties. However, the practical applicabilities for emissive and catalytic devices are still debatable, because of the lack of fundamental understanding behind the structure–property correlations. Herein, we have developed different types of nitrogen-doped CDs (N-CDs) by varying different nitrogen-containing precursors through a simple bottom-up based carbonization technique. Depending on the nature of nitrogen atom precursor, we are able to critically control the subpopulations of various intrinsic constituents of N-CDs, i.e., aromatic domains, amorphous domains, and small molecular fluorophores inside N-CDs. Detailed structural and elemental features have been correlated with the underpinning photophysical processes by means of steady-state and time-resolved fluorescence spectroscopy. In addition, the effect of temperature on overall photoluminescence properties has been corroborated with the internal structure of N-CDs. Finally, we have investigated the photocatalytic properties and the detailed photocatalysis mechanisms by scavenging the active species originated upon light irradiation. Results suggest that photocatalytic efficiency is maximum at a larger extent of amorphous domains and in the presence of nitrogen atoms specifically located at the edges, while photoluminescence intensity is higher at larger extent of molecular fluorophores and aromatic domains. Therefore, these fundamental investigations will open up new possibilities considering the optimizations of heteroatom functionalized CDs for their on-demand applicabilities in emitting as well as photocatalytic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.