Abstract

The activity of H+-ATPases of plant and fungi generates an electrochemical gradient of H+ across the cell plasma membrane that drives a number of secondary transport systems, including those responsible for the translocation of cations, anions, amino acids and sugars. During the last years, several studies have been aimed at elucidating the role of plasma membrane H+-ATPases in the nutrient exchange processes taking place between the plant and the fungus in arbuscular mycorrhizal (AM) symbiosis. This paper reviews present knowledge about plasma membrane H+-ATPases and experimental evidence supporting the involvement of H+-ATPases of both organisms in the bidirectional transport of nutrients between partners. Molecular strategies that will provide further information on the function and regulation of plasma membrane H+-ATPases in AM symbiosis are presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call