Abstract

In this study, we investigated the impact of molecular and supramolecular structure of conducting polymers (CPs) on their thermoelectric properties. As a model system, poly(3-alkylthiophene)s (P3ATs) with different side-chain lengths were prepared through oxidative chemical polymerization and were recrystallized to a well-ordered lamellar structure, resulting in one-dimensional self-assembled nanofibers (evidenced by transmission electron microscopy, X-ray diffraction, and UV–vis spectroscopic measurements). Thermoelectric characterization was performed at different doping levels (precisely tuned by doping in the redox reaction with Ag+ and Fe3+ cations), and the highly doped samples exhibited the best performance for all studied polymers. By varying the length of the alkyl side chain, the supramolecular structure and consequently the electronic properties were varied. The highest electrical conductivity was measured for poly(3-butylthiophene), rooted in its densely packed structure. The established struc...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.