Abstract

Several biomaterials have been introduced for bone augmentation. However, information is lacking about the mechanisms of bone regeneration and/or integration of these materials in the recipient bone. This study aimed to determine the molecular and structural events in bone defects after augmentation with synthetic tetrapod-shaped calcium phosphate (Tetrabone; TetraB) compared with natural deproteinized bovine bone (DBB). Defects were created in the epiphyses of rat femurs and filled with TetraB or DBB or left empty (Sham). After 3, 6, 14 and 28 d, samples were harvested for histology, histomorphometry, ultrastructure and gene expression analyses. At 3 d, higher expressions of bone formation (ALP and OC) and remodeling (CatK) genes were detected in TetraB compared with DBB and Sham. Downregulation of bone remodeling genes (TRAP and CatK) was detected in DBB as compared to Sham after 14 d. Histomorphometry at 6 and 14 d demonstrated greater bone contact with the granules in TetraB. At 28 d, a larger bone area per defect was found in TetraB. The present experiments show that a synthetic substitute, consisting of α-tricalcium and octacalcium phosphates, induces early osteogenic and osteoclastic activities and promotes bone formation in trabecular bone defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.