Abstract

The first eukaryotic proline racemase (PRAC), isolated from the human Trypanosoma cruzi pathogen, is a validated therapeutic target against Chagas' disease. This essential enzyme is implicated in parasite life cycle and infectivity and its ability to trigger host B-cell nonspecific hypergammaglobulinemia contributes to parasite evasion and persistence. Using previously identified PRAC signatures and data mining we present the identification and characterization of a novel PRAC and five hydroxyproline epimerases (HyPRE) from pathogenic bacteria. Single-mutation of key HyPRE catalytic cysteine abrogates enzymatic activity supporting the presence of two reaction centers per homodimer. Furthermore, evidences are provided that Brucella abortus PrpA [for ‘proline racemase’ virulence factor A] and homologous proteins from two Brucella spp are bona fide HyPREs and not ‘one way’ directional PRACs as described elsewhere. Although the mechanisms of aminoacid racemization and epimerization are conserved between PRAC and HyPRE, our studies demonstrate that substrate accessibility and specificity partly rely on contraints imposed by aromatic or aliphatic residues distinctively belonging to the catalytic pockets. Analysis of PRAC and HyPRE sequences along with reaction center structural data disclose additional valuable elements for in silico discrimination of the enzymes. Furthermore, similarly to PRAC, the lymphocyte mitogenicity displayed by HyPREs is discussed in the context of bacterial metabolism and pathogenesis. Considering tissue specificity and tropism of infectious pathogens, it would not be surprising if upon infection PRAC and HyPRE play important roles in the regulation of the intracellular and extracellular amino acid pool profiting the microrganism with precursors and enzymatic pathways of the host.

Highlights

  • In recent years, an increasing interest rose concerning Proline Racemases (PRAC)

  • Blast searches of NCBI and Swiss-Prot/TrEMBL databases with full-length T. cruzi proline racemase (TcPRAC) sequences resulted in 184 hits from which 111 possess the minimal PRAC stringent MIII* among which 62 hits were directly annotated as ‘PRAC’, without previous validation of the enzymatic activity

  • The present analysis revealed that MIII* and MCGH motif [10], encompassing the TcPRAC Cys300 and Cys130 crucial residues respectively, were consistently present in 92 sequences

Read more

Summary

Introduction

An increasing interest rose concerning Proline Racemases (PRAC). Originally isolated in 1957 from Clostridium sticklandii (CsPRAC) [1], PRAC has been extensively studied in the eighties by several groups at the biochemical level [2,3]. The first eukaryotic PRAC was isolated from the Trypanosoma cruzi pathogen (TcPRAC) and shown to be involved in the mechanisms of parasite escape from host immune responses for its mitogenic properties toward B lymphocytes [4,5]. Similar genes in the human genome lack crucial enzyme catalytic residues consolidating TcPRAC as a lead for drug development against trypanosomiasis [7,8]. Thermodynamic studies and the overall 3D-structure of homodimeric TcPRAC in complex with its competitive inhibitor provided evidences that proline (Pro) racemization operates by stabilization of carbanionic transition-state species in a two-Cystein-dependent acid/base catalytic mechanism [10]. As demonstrated by site-specific mutagenesis, racemization of Pro involves two catalytic cystein (Cys) residues (Cys130 and Cys300 ) per TcPRAC subunit

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.