Abstract

Apple chlorotic leaf spot virus (ACLSV) isolates from sand pear (Pyrus pyrifolia) were characterized by analyzing the sequences of their coat protein (CP) genes and serological reactivity of recombinant coat proteins (rCPs). The sequences of CP genes from 22 sand pear isolates showed a high divergence, with 87.3–100% identities at the nucleotide (nt) level and 92.7–100% identities at the amino acid (aa) level. Phylogenetic analysis on the aa sequence of CP showed that the analyzed ACLSV isolates fell into different clusters and all isolates from sand pear were grouped into a large cluster (I) which was then divided into two sub-clusters (A and B). Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot and enzyme-linked immunosorbent assay (ELISA) analyses demonstrated that rCPs of eight ACLSV isolates (PP13, PP15-2, PP24, PP43, PE, PP54, PP56 and ACLSV-C) from two sub-clusters had different mobility rates and serological reactivity. The rCPs of five isolates grouped into the sub-cluster A showed stronger reactivity with antibodies against rCPs of a sand pear isolate ACLSV-BD and virions of a Japanese apple isolate P-205 than that with the antibody against a Chinese apple isolate ACLSV-C. Three isolates grouped into the sub-cluster B showed stronger reactivity with the antibody against ACLSV-C. The antigenic determinants of CPs from these eight isolates and isolates ACLSV-BD and P-205 were predicted. These results contribute to a further understanding of molecular diversity of the virus and its implication in serological detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call