Abstract

Organic carbon (OC) burial in river-dominated ocean margins plays a pivotal role in the global carbon cycle, impacting atmospheric CO2 levels over the long term. Despite its significance, uncertainties persist regarding the influence of external environmental factors and intrinsic properties on sedimentary OC. In this study, we conducted a comprehensive analysis of surface sediments from the East China Sea, examining geochemical properties (including total OC content [TOC], Δ14C, δ13C, and C/N ratio), terrestrial biomarkers (n-alkanes), and mineral properties (such as specific surface area, Al/Si ratio, and mineral composition). Our aim was to shed light on the fate of sedimentary OC.The surface sediment's Δ14C values displayed significant spatial heterogeneity, delineating four distinct sub-regions. Strong positive correlations (all p < 0.01) were found between the ∆14C values and fine-grained sediments, specific surface area, and clay minerals, suggesting the potentially pivotal role of mineral protection in shaping the fate of sedimentary OC. The proportion of terrestrial OC gradually decreased towards the south, while marine OC proportion increased, corresponding to the enrichment of Δ14C. The co-variation of Δ14C values, mineral properties, and OC source proportions suggests that terrestrial OC may undergo progressive replacement by marine OC during southward transport. Temporal variations in ∆14C values indicated that seabed erosion led to a significant increase in ∆14C values (p < 0.01) in the coastal mud belt, a phenomenon likely common in river-dominated ocean margins globally due to the new sediment cycle during the Anthropocene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call