Abstract
BackgroundVirus-like particles (VLP) have an increasing range of applications including vaccination, drug delivery, diagnostics, gene therapy and nanotechnology. These developments require large quantities of particles that need to be obtained in efficient and economic processes. Production of VLP in yeast is attractive, as it is a low-cost protein producer able to assemble viral structural proteins into VLP. However, to date only single-layered VLP with simple architecture have been produced in this system. In this work, the first steps required for the production of rotavirus-like particles (RLP) in S. cerevisiae were implemented and improved, in order to obtain the recombinant protein concentrations required for VLP assembly.ResultsThe genes of the rotavirus structural proteins VP2, VP6 and VP7 were cloned in four Saccharomyces cerevisiae strains using different plasmid and promoter combinations to express one or three proteins in the same cell. Performance of the best constructs was evaluated in batch and fed-batch cultures using a complete synthetic media supplemented with leucine, glutamate and succinate. The strain used had an important effect on recombinant protein concentration, while the type of plasmid, centromeric (YCp) or episomal (YEp), did not affect protein yields. Fed-batch culture of the PD.U-267 strain resulted in the highest concentration of rotavirus proteins. Volumetric and specific productivities increased 28.5- and 11-fold, respectively, in comparison with batch cultures. Expression of the three rotavirus proteins was confirmed by immunoblotting and RLP were detected using transmission electron microscopy.ConclusionsWe present for the first time the use of yeast as a platform to express multilayered rotavirus-like particles. The present study shows that the combined use of molecular and bioprocess tools allowed the production of triple-layered rotavirus RLP. Production of VLP with complex architecture in yeasts could lead to the development of new vaccine candidates with reduced restrictions by regulatory agencies, using the successful experience with other yeast-based VLP vaccines commercialized worldwide.
Highlights
Virus-like particles (VLP) have an increasing range of applications including vaccination, drug delivery, diagnostics, gene therapy and nanotechnology
Saccharomyces cerevisiae, Hansenula polymorpha and Pichia pastoris have been used to produce single-layered VLP of different viruses composed of a single nucleocapsid protein or a chimeric protein assembled in one layer [7,10]
All rotavirus genes used in this work have a bovine origin, and their compatibility was confirmed by their amino acid sequence homology to rotavirus NCDV proteins using BLAST
Summary
Virus-like particles (VLP) have an increasing range of applications including vaccination, drug delivery, diagnostics, gene therapy and nanotechnology. These developments require large quantities of particles that need to be obtained in efficient and economic processes. The first steps required for the production of rotavirus-like particles (RLP) in S. cerevisiae were implemented and improved, in order to obtain the recombinant protein concentrations required for VLP assembly. Virus-like particles (VLP) are obtained when viral structural proteins are produced in heterologous expression systems in absence of viral genetic material. The current market demand of VLP is primarily as products for vaccination [1], but other applications include diagnostics, biomedicine, material science and nanotechnology [2,3].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.