Abstract

SummaryBiological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time‐dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age‐related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well‐described molecular and cellular hallmarks and discuss physiological changes of aging at the organ‐system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging.

Highlights

  • The number of individuals aged 60 or older will increase dramatically in the three decades

  • Aged individuals who survive in good health to the end of the human lifespan are rare, and a fixed limit to human lifespan may exist (Dong et al, 2016)

  • Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs

Read more

Summary

Introduction

The number of individuals aged 60 or older will increase dramatically in the three decades. The interplay of the above mechanisms and pathways contribute to aging on an organismal level and offer potential parameters to include in a composite assessment of biological age as well as targets for therapies aimed to counter age-related functional decline and morbidity.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.