Abstract
Molecular and Physiological Adaptations to Weight Perturbation in Mice Yann Ravussin From a medical perspective, obesity may be defined as a degree of relative adiposity sufficient to derange metabolic physiology in a manner that negatively impacts the health of the individual. While population-based cut points based on body mass index (BMI) are frequently used as a means of identifying such individuals, this is an imprecise approach since the critical levels of adiposity in this regard differ substantially among individuals. Our common genetic predisposition to increased adiposity, coupled with an environment conducive to positive energy balance results in an increasing prevalence of human obesity. Weight loss, even when initially successful, is very difficult to maintain due, in part, to a feedback system involving metabolic, behavioral, neuroendocrine and autonomic responses that are initiated to maintain somatic energy stores (fat) at a level considered ‘ideal’ by the central nervous system (CNS). Circulating leptin is an important afferent signal to the CNS relating peripheral energy stores with modulations in key leptin sensing area sensitivity possibly implicated in the functional and molecular basis of defense of body weight. These physiological responses, which include increased metabolic efficiency at lower body weight, may be engaged in individuals at different levels of body fat depending on their genetic makeup, as well as on gestational and post-natal environmental factors that have determined the so-called “set-point”. In the work presented in this dissertation the following aspects of the physiology of the defense of body weight were explored: 1) whether levels (thresholds) of defended adiposity can be raised or lowered by environmental manipulation; 2) the physiological and molecular changes that mediate increased metabolic efficiency following weight loss, 3) leptin’s role in setting the threshold; 4) the effects of ambient temperature on metabolic phenotypes of weight perturbed to assess whether torpor contributes to metabolic adaptation; and 5) whether changes in gut microbiota accompany changes in diet composition and/or body weight. To assess whether the threshold for defended body weight could be increased or decreased by environmental manipulations (i.e. high fat diet & weight restriction), we identified bioenergetic, behavioral, and CNS structural responses of C57BL/6J in long term diet induced obese (DIO) male mice to weight reduction. We found that maintenance of a body weight 20% below that imposed by a high fat diet results in metabolic adaptation energy expenditure below that expected for body mass and composition and structural changes of synapses onto arcuate pro-opiomelanocortin (POMC) cell bodies. These changes are qualitatively and quantitatively similar to those observed in weight-reduced animals that were never obese, suggesting that the previously obese animals are now “defending” a higher body weight. Maintenance of a lower body weight for more than 3 months was not accompanied by remission of the increased metabolic efficiency. Thus, the consequence of long term elevation of body weight suggests an increase in defended body fat that does not abate with time. Mice can enter torpor – a state of decreased metabolic rate and concomitant decrease in body temperature – as a defense mechanism in times of low caloric availability and/or decreased ambient room temperatures. Declines in circulating leptin concentrations and low ambient room temperature have both been implicated in the onset of torpor. To assess the effects of ambient room temperature and leptin concentrations on metabolic adaptation, we characterized C57BL/6J and leptin deficient (Lep ob ) mice following weight perturbation at both 22°C and 30°C ambients. Weight-reduced C57BL/6J mice show metabolic adaptation at both ambient temperatures and do not enter torpor whereas weight-reduced Lep ob animals readily enter torpor at 22°C. This suggests that sufficiently high absolute leptin concentrations may impede the onset of torpor and that torpor itself does not contribute to metabolic adaptation in mice that have an intact leptin
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.