Abstract

Incomplete reproductive isolation promotes gene flow between diverging taxa. However, any gene encoding for traits involved in the reproductive barriers will be less prone to introgression than neutral markers. Comparing introgression rates among loci is thus informative of the number and functions of loci involved in the reproductive barriers. This study aimed at identifying possible mechanisms of restriction to gene flow across a zone of recent secondary contact between Larus argentatus and Larus cachinnans by comparing introgression patterns for nine microsatellite loci, a fragment of mitochondrial DNA and a set of phenotypic traits. The low linkage disequilibrium between neutral nuclear markers indicated introgression without any barrier to gene flow. However, asymmetric introgression of mitochondrial DNA suggested that interspecific crosses may be more successful in one direction. The introgression rate for phenotypic traits was variable and low compared to neutral molecular markers. This was particularly evident in colouration of bare parts: individuals with intermediate colouration were scarcer in sympatry than expected if the genomes recombined freely. We hypothesized that one of these variables, the orbital ring colour, may play a role in mate choice, acting as an incomplete premating barrier through assortative mating. This study emphasizes that multilocus approaches are useful to discriminate among possible mechanisms responsible for the maintenance of hybrid zones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.