Abstract

BackgroundIn spite of the global effort to eliminate malaria, it remains the most significant vector-borne disease of humans. Plasmodium falciparum is the dominant malaria parasite in sub-Saharan Africa. However, Plasmodium vivax is becoming widely spread throughout Africa. The overuse of vector control methods has resulted in a remarkable change in the behaviour of mosquito that feeds on human as well as on vector composition. The aim of this study was to identify Anopheles mosquito species in vivax malaria endemic regions and to investigate their role in P. vivax circumsporozoite protein (Pvcsp) allele diversity.MethodsMosquito samples were collected from Central Sudan (Rural Khartoum and Sennar) and Eastern Sudan (New Halfa, Kassala state) using pyrethrum spray catch (PSC) and CDC light traps. Mosquitoes were identified using appropriate morphological identification keys and Anopheles gambiae complex were confirmed to species level using molecular analysis. A subset of blood-fed anopheline mosquitoes were dissected to determine the presence of natural infection of malaria parasites. In addition, the rest of the samples were investigated for the presence of Pvcsp gene using nested-PCR.ResultsA total of 1037 adult anopheline mosquitoes were collected from New Halfa (N = 467), Rural Khartoum (N = 132), and Sennar (N = 438). Morphological and molecular identification of the collected mosquitoes revealed the presence of Anopheles arabiensis (94.2%), Anopheles funestus (0.5%), and Anopheles pharoensis (5.4%). None of the dissected mosquitoes (N = 108) showed to be infected with malaria parasite. Overall P. vivax infectivity rate was 6.1% (63/1037) by Pvcsp nested PCR. Co-dominance of An. arabiensis and An. pharoensis is reported in Sennar state both being infected with P. vivax.ConclusionThis study reported P. vivax infection among wild-caught anopheline mosquitoes in Central and Eastern Sudan. While An. arabiensis is the most abundant vector observed in all study areas, An. funestus was recorded for the first time in New Halfa, Eastern Sudan. The documented Anopheles species are implicated in Pvcsp allele diversity. Large-scale surveys are needed to identify the incriminated vectors of P. vivax malaria and determine their contribution in disease transmission dynamics.

Highlights

  • In spite of the global effort to eliminate malaria, it remains the most significant vector-borne disease of humans

  • Results of this study demonstrated that An. arabiensis was the most abundant Anopheles species, followed by An. pharoensis, and the least was An. funestus, supporting that An. arabiensis is the principal malaria vector in Sudan

  • In contrast to Himeidan et al and Lewis [52, 53], who had recorded the presence of An. pharoensis and Anopheles multicolour in New Halfa, this study showed the presence of An. funestus in the same area but in a small number

Read more

Summary

Introduction

In spite of the global effort to eliminate malaria, it remains the most significant vector-borne disease of humans. Plasmodium falciparum is the dominant malaria parasite in sub-Saharan Africa. The estimated malaria cases in 2019 was 229 million cases occurred worldwide resulting in 409,000 malaria related death, owing the deadliest parasite (Plasmodium falciparum), predominantly in sub-Saharan Africa [1]. The “benign tertian malaria” description of vivax malaria has been challenged by recent reports and documentation of severe P. vivax infections and even deaths [4, 5]. Its presence in Africa has not well documented and reported because of the very high endemicity of P. falciparum and for the accepted paradigm that Africans are protected from P. vivax infection by genetic factors [9, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call