Abstract

ObjectivesThe ability to differentiate between brain tumor progression and radiation therapy induced necrosis is critical for appropriate patient management. In order to improve the differential diagnosis, we combined fluorine-18 2-fluoro-deoxyglucose positron emission tomography (18F-FDG PET), proton magnetic resonance spectroscopy (1H MRS) and histological data to develop a multi-parametric machine-learning model. MethodsWe enrolled twelve post-therapy patients with grade 2 and 3 gliomas that were suspicious of tumor progression. All patients underwent 18F-FDG PET and 1H MRS. Maximal standardized uptake value (SUVmax) of the tumors and reference regions were obtained. Multiple 2D maps of choline (Cho), creatine (Cr), and N-acetylaspartate (NAA) of the tumors were generated. A support vector machine (SVM) learning model was established to take imaging biomarkers and histological data as input vectors. A combination of clinical follow-up and multiple sequential MRI studies served as the basis for assessing the clinical outcome. All vector combinations were evaluated for diagnostic accuracy and cross validation. The optimal cutoff value of individual parameters was calculated using Receiver operating characteristic (ROC) plots. ResultsThe SVM and ROC analyses both demonstrated that SUVmax of the lesion was the most significant single diagnostic parameter (75% accuracy) followed by Cho concentration (67% accuracy). SVM analysis of all paired parameters showed SUVmax and Cho concentration in combination could achieve 83% accuracy. SUVmax of the lesion paired with SUVmax of the white matter as well as the tumor Cho paired with the tumor Cr both showed 83% accuracy. These were the most significant paired diagnostic parameters of either modality. Combining all four parameters did not improve the results. However, addition of two more parameters, Cho and Cr of brain parenchyma contralateral to the tumor, increased the accuracy to 92%. ConclusionThis study suggests that SVM models may improve detection of glioma progression more accurately than single parametric imaging methods. Research supportNational Cancer Institute, Cancer Center Support Grant Supplement Award, Imaging Response Assessment Teams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.