Abstract

Abstract— The Tagish Lake meteorite soluble organic suite has a general composition that differs from those of both CI and CM chondrites. These differences suggest that distinct processes may have been involved in the formation of different groups of organics in meteorites. Tagish Lake alkyl dicarboxylic acids have a varied, abundant distribution and are, with carboxylated pyridines, the only compounds to have an occurrence comparable to that of the Murchison meteorite. This study has undertaken their molecular and isotopic characterization, with the aim to understand their origin and to gain insights into the evolutionary history of the meteorite parent body.Tagish Lake alkyl dicarboxylic acids are present as a homologous series of saturated and unsaturated species with three‐ through ten‐carbon atom chain length. Linear saturated acids are predominant and show decreasing amounts with increasing chain length. A total of 44 of these compounds were detected with the most abundant, succinic acid, present at ˜40 nmol/g meteorite. Overall the molecular distribution of Tagish Lake dicarboxylic acids shows a remarkable compound‐to‐compound correspondence with those observed in the Murchison and Murray meteorites. In both Tagish Lake and Murchison, the imides of the more abundant dicarboxylic acids were also observed.The hydrogen and carbon isotopic compositions of individual Tagish Lake dicarboxylic acids were determined and compared to those of the corresponding acids in the Murchison meteorite. All δD and δ13C values for Tagish Lake acids are positive and show a substantial isotopic enrichment. δD values vary from, approximately, +1120%o for succinic acid to +1530%o for methyl glutaric acid. δ13C values ranged from +12.6%o for methyl glutaric acid to +22.9%o for glutaric acid, with adipic acid having a significantly lower value (+5.5%o). Murchison dicarboxylic acid showed similar isotopic values: their δ513C values were generally higher by an average 17% and δD values were lower for succinic and glutaric acids, possibly due to contamination.The molecular and isotopic data collected for these compounds restrict their possible origin to processes, either interstellar or of very cold nebular regions, that produced significant isotopic enrichments. Saturated or partially unsaturated nitriles and dinitriles appear to be good precursor candidates as their hydrolysis, upon water exposure, would produce dicarboxylic acids and other carboxylated species found in Tagish Lake. This evolutionary course could possibly include pre‐accretionary processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call