Abstract

Background: The protein product of the normal TP53 gene performs an essential function in cell cycle control and tumor suppression, and the mutation of a TP53 gene is an essential step in the development of many cancers. Despite the reported association of TP53 gene mutations with many human cancers, the comprehensive computational analysis of single nucleotide polymorphisms (SNPs), and their functional impacts, still remains rare. Methods: In this study DNA were extracted from formalin fixed paraffin embedded samples followed by the conventional polymerase chain reaction and DNA sequencing. Computational analysis was performed using different algorithms to screen for deleterious SNPs. Results: The results demonstrate that there are synonymous SNPs (sSNPs) and non-synonymous SNPs (nsSNPs) in the TP53 gene that may be deleterious to p53 structure and function. Additionally, TP53 gene mutations were found in 40% of samples. Six out of ten of TP53 gene mutations occurred in exon 5, two mutation in exon 6 and other two were present in exon 8. Only one SNP in position E298Q was predicted to have a neutral effect and other SNPs were predicted to be disease related according to Mutation Taster software. A total of 37.2% of squamous cell carcinoma (SCC) samples were found to be mutated, 87.5% of them exist in exon 5, 12.5% in exon 6 and 6.3% in exon 8, whereas adenocarcinoma (AC) achieved a higher rate of mutation (57.1%) with 100% exon 5 involvement. Conclusions: Mutation of TP53 exon 5 in esophageal cancer patients were the most frequent. Genomic results have identified a higher TP53 mutation rate in esophageal AC in contrast to SCC.

Highlights

  • Esophageal cancer is considered one of the eight most common cancers throughout the world, and is one of the most fatal cancers, taking into account its aggressiveness and reduced survival rate

  • Sampling Sections of 30–40 μm thickness from 50 formalin fixed paraffin embedded (FFPE) tissue samples were obtained from esophageal cancer patients representing different hospitals and clinics in Khartoum State, Sudan, from July 2013 to June 2017

  • Results of TP53 gene mutations in esophageal carcinomas Esophageal squamous cell carcinoma cases represent 43 (86%) of all cases, whereas adenocarcinoma made up 7 cases (14%)

Read more

Summary

Introduction

Esophageal cancer is considered one of the eight most common cancers throughout the world, and is one of the most fatal cancers, taking into account its aggressiveness and reduced survival rate. Human p53 protein contains three domains; transcriptional activation, DNA binding, and oligomerization domains. These domains are edged by a connecting region. The protein product of the normal TP53 gene performs an essential function in cell cycle control and tumor suppression, and the mutation of a TP53 gene is an essential step in the development of many cancers. Despite the reported association of TP53 gene mutations with many human cancers, the comprehensive computational analysis of single nucleotide polymorphisms (SNPs), and their functional impacts, still remains rare. A total of 37.2% of squamous cell carcinoma (SCC) samples were found to be mutated, 87.5% of them exist in exon 5, 12.5% in exon 6 and 6.3% in exon 8, whereas adenocarcinoma (AC) achieved a higher rate of mutation (57.1%) with 100% exon 5 involvement.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.