Abstract
The Drosophila Prat gene encodes phosphoribosylamidotransferase (PRAT), the enzyme that performs the first committed step of the de novo purine nucleotide biosynthesis pathway. Using information from amino acid sequence alignments of PRAT from other organisms, a polymerase chain reaction-based approach was employed to clone Prat. Amino acid sequence alignment of Drosophila PRAT with PRAT from bacteria, yeast, and vertebrates indicates that it is most identical (at least 60%) to the vertebrate PRATs. It shares putative amino-terminal propeptide and iron-binding domains seen only in Bacillus subtilis and vertebrate PRATs. Prat was localized to the right arm of chromosome 3 at polytene band 84E1-2. Owing to the fact that this region had been well characterized previously, Prat was localized to a 30-kilobase region between two deficiency breakpoints. By making the prediction that Prat would have a similar "purine syndrome" phenotype as mutations in the genes ade2 and ade3, which encode enzymes downstream in the pathway, five alleles of Prat were isolated. Three of the alleles were identified as missense mutations. A comparison of PRAT enzyme activity with phenotype in three of the mutants indicates that a reduction to 40% of the wild-type allele's activity is sufficient to cause the purine syndrome, suggesting that PRAT activity is limiting in Drosophila.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.