Abstract

Members of the genus Actinomyces are predominant primary colonizers of the oral cavity and play an important role in initiating plaque development. These bacteria have evolved unique mechanisms that favor colonization and persistence in this micro-environment. The expression of cell-surface fimbriae is correlated with the ability of these bacteria to adhere to specific receptors on the tooth and mucosal surfaces, and to interact with other plaque bacteria. The elaboration of sialidase is thought to enhance fimbriae-mediated adherence by unmasking the fimbrial receptors on mammalian cells. The presence of certain cell-associated or extracellular enzymes, including those involved in sucrose or urea metabolism, may provide the means for these bacteria to thrive under conditions when other growth nutrients are not available. Moreover, these enzyme activities may influence the distribution of other plaque bacteria and promote selection for Actinomyces spp. in certain ecological niches. The recent development of a genetic transfer system for Actinomyces spp. has allowed for studies the results of which demonstrate the existence of multiple genes involved in fimbriae synthesis and function, and facilitated the construction of allelic replacement mutants at each gene locus. Analyses of these mutants have revealed a direct correlation between the synthesis of assembled fimbriae and the observed adherence properties. Further genetic analysis of the various enzyme activities detected from strains of Actinomyces should allow for an assessment of the role of these components in microbial ecology, and their contribution to the overall success of Actinomyces spp. as a primary colonizer and a key player in oral health and disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call