Abstract

Granulocyte colony-stimulating factor (GCSF) is a member of the hematopoietic growth factor family that acts primarily on neutrophils and neutrophilic precursors to promote cell proliferation and differentiation. Although multiple GCSF genes have been found in teleosts, knowledge of their functions during fish hematopoietic development is still limited. Here, we report for the first time the molecular and functional characterization of two goldfish GCSFs (gfGCSF-a and gfGCSF-b). The open reading frame (ORF) of the gfGCSF-a and gfGCSF-b cDNA transcript consisted respectively of 624bp and 678bp with its ORF encoding 207 and 225 amino acids (aa), with a 17 aa signal peptide for each gene and a conserved domain of the IL-6 superfamily. Treatment of goldfish head kidney leukocytes (HKLs) with LPS increased gfGCSF-a and gfGCSF-b mRNA expression levels, also exposure of HKLs to either heat-killed or live A. hydrophila, induced transcriptional upregulation of gfGCSF-a and gfGCSF-b levels. Recombinant gfGCSF-a and gfGCSF-b protein (rgGCSF-a and rgGCSF-b) induced a dose-dependent production of TNFα and IL-1β from goldfish neutrophils. In vitro experiments showed rgGCSF-a and rgGCSF-b differentially promoted the proliferation and differentiation of leukocytes in goldfish. Furthermore, treatment of HKLs with rgGCSF-a showed significant upregulation of mRNA levels of the hematopoietic transcription factor GATA2, Runx1, MafB, and cMyb, while gfGCSF-b induces not only all four transcriptional factors mentioned above but also CEBPα. Our results indicate that goldfish GCSF-a and GCSF-b are important regulators of neutrophil proliferation and differentiation, which could stimulate different stages and lineages of hematopoiesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call