Abstract

Arylamine N-acetyltransferases (NATs) are drug-metabolizing enzymes essential for the metabolism of endogenous substrates and xenobiotics, and their molecular characteristics have been extensively investigated in humans, but not in cynomolgus macaques, nonhuman primate species important for drug metabolism studies. In this study, cynomolgus NAT1 and NAT2 cDNAs were isolated from livers. NAT1 and NAT2 were characterized by molecular analyses and drug-metabolizing assays. A total of 9 transcript variants were found for cynomolgus NAT1, similar to human NAT1, and contained 1-4 exons with the coding region largely conserved with human NAT1. Genomic organization was similar between cynomolgus macaques and humans. Cynomolgus NAT1 and NAT2 amino acid sequences showed high sequence homology (95% and 89%, respectively) and showed close relationships with human NAT1 and NAT2 in a phylogenetic tree. Cynomolgus NAT2 mRNA was predominantly expressed in liver among the 10 different tissues analyzed, followed by kidney and jejunum. In contrast, cynomolgus NAT1 mRNA showed more ubiquitous expression with relatively more abundant expression in liver, kidney, and jejunum, along with testis. Metabolic assays using recombinant proteins showed that cynomolgus NAT1 and NAT2 metabolized human NAT substrates, including p-aminobenzoic acid, sulfamethazine, isoniazid, and 2-aminofluorene. Interestingly, p-aminobenzoic acid and isoniazid were largely metabolized by NAT1 and NAT2, respectively, in cynomolgus macaques and humans; sulfamethazine, a human NAT2 substrate, was metabolized by both NAT enzymes in cynomolgus macaques. These results suggest molecular and enzymatic similarities of NAT1 and NAT2 between cynomolgus macaques and humans, despite some small differences in substrate specificity of the enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call