Abstract

The genes required for the synthesis of aflatoxin (AF) in Aspergillus flavus and Aspergillus parasiticus have been shown to be clustered on a chromosome in these fungi. Transcription of most of these genes is dependent upon the activity of the aflR gene, also present on the gene cluster, which encodes a zinc binuclear cluster DNA-binding protein. While many strains of A. parasiticus have only one copy of aflR ( aflR-1), many others contain a second copy of this gene ( aflR-2) which resides on a duplicated region of the aflatoxin gene cluster. Targeted disruption of aflR-1 generated a number of non-aflatoxin producing transformants of A. parasiticus SU-1 which still harbored a wild-type aflR-2 gene. Southern and Northern hybridization analyses and ELISA assays demonstrated that aflR-1 had been successfully inactivated in strain AFS10. DNA sequence analysis showed that aflR-2 was capable of encoding a deduced 47 kDa protein. Northern and RT-PCR analysis of RNA from a toxin producing strain indicated that aflR-2 was transcribed at extremely low levels compared to aflR-1. RT-PCR analysis of RNA from AFS10 demonstrated that mRNAs of aflatoxin pathway genes were not processed to their mature forms. Functional analysis of aflr-2 protein in a yeast system showed that it was not activating transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.