Abstract

Resistance in clear cell renal cell carcinoma (ccRCC) against sunitinib is a multifaceted process encompassing numerous molecular aberrations. This induces clinical complications, reducing the treatment success. Understanding these aberrations helps us to select an adapted treatment strategy that surpasses resistance mechanisms, reverting the treatment insensitivity. In this regard, we investigated the dominant mechanisms of resistance to sunitinib and validated an optimized multidrug combination to overcome this resistance. Human ccRCC cells were exposed to single or chronic treatment with sunitinib to obtain three resistant clones. Upon manifestation of sunitinib resistance, morphometric changes in the cells were observed. At the molecular level, the production of cell membrane and extracellular matrix components, chemotaxis, and cell cycle progression were dysregulated. Molecules enforcing the cell cycle progression, i.e., cyclin A, B1, and E, were upregulated. Mass spectrometry analysis revealed the intra- and extracellular presence of N-desethyl sunitinib, the active metabolite. Lysosomal sequestration of sunitinib was confirmed. After treatment with a synergistic optimized drug combination, the cell metabolic activity in Caki-1-sunitinib-resistant cells and 3D heterotypic co-cultures was reduced by >80%, remaining inactive in non-cancerous cells. These results demonstrate geno- and phenotypic changes in response to sunitinib treatment upon resistance induction. Mimicking resistance in the laboratory served as a platform to study drug responses.

Highlights

  • We considered the cells as stably resistant once they became significantly insensitive to high dose (10 μM) treatment and when an accumulation of sunitinib in the cell body, in lysosomes, was confirmed (Supplementary Figure S1B–D)

  • We evaluated the activity of an optimized low-dose synergistic drug combination (ODC), previously optimized by us in Caki-1-SR cells [37]

  • We evaluated the consequences of sunitinib resistance induction in human RCC cell lines at molecular, morphometric, and functional levels

Read more

Summary

Introduction

Through sustaining proliferative signaling, evading growth suppressors, and enabling replicative immortality, cancer cells may acquire resistance to anti-cancer drugs [1]. This is because a tumor may adapt to chronic drug administration and avoid medication-mediated growth control. Independent of the therapy type, i.e., chemotherapy, radiotherapy, and targeted therapies, the incidence of treatment resistance increases, making it more difficult to find and select the most beneficial treatment strategies [2,3,4,5]. Prevalent molecular mechanisms of resistance involve, e.g., genetic mutations, modifications up and downstream, and alternating the signaling transduction via compensatory pathways [6].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call