Abstract

Of all the structural variants of GnRH (gonadotropin-releasing hormone), GnRH-II has been found to be universally present in and uniquely conserved among jawed vertebrates without any sequence substitutions. Our previous study found that the GnRH-II precursor sequences have become divergent in the lineage of eutherian mammals, based on a comparison between reptilian and mammalian GnRH-II. To elucidate the molecular evolution of GnRH-II throughout amniotes, we have performed the first identification of the avian GnRH-II cDNA/gene from the chicken, the species used for the initial discovery of GnRH-II peptide. Gene arrangement around the GnRH-II in the chicken was similar to that in mammals; however, a gene MRPS26 was partly overlapped with the downstream part of the GnRH-II in the chicken. It was identified that the GnRH-II/ MRPS26 locus generated at least five distinct types of transcripts with different expression patterns and three of them may produce functional GnRH-II decapeptide. Sequence comparison revealed that the prepro-GnRH-II polypeptide of the chicken was substantially different from those of other species regarding the length and similarity. The present results strongly indicated that considerable variations were generated in the precursor sequence of the evolutionarily conserved GnRH-II during amniote evolution. It was also suggested that the sequence divergence seen in the chicken may have occurred independently of that in the mammalian lineage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.