Abstract

There is a global trend in the use of natural bioactive compounds to complement conventional therapies in bone diseases. In this work, we studied the effects of the phytoestrogen quercetin (QUE) in healthy and tumor osteoblasts. We found that QUE (1 μM, 48 h) significantly increased the cell number and the viability of healthy human osteoblasts (hFOB cells) determined by a trypan blue and a MTS assay, respectively, among other concentrations tested. In addition, wound healing and cellular adhesion assays also demonstrated that 1 μM of QUE significantly stimulated both parameters in osteoblasts. Moreover, osteoblast differentiation was also triggered by QUE in an osteogenic medium by measuring alkaline phosphatase activity, calcium deposition, and collagen levels. Herein, a concentration of 0.01 μM of QUE showed an increment in these differentiation markers and an activation of AKT/GSK3β/β-catenin pathway, determined by a Western blot analysis. In addition, immunocytochemistry and subcellular fraction studies indicated an increase of β-catenin localization in the plasma membrane after QUE treatment. Otherwise, QUE (20–100 μM) decreased the cell number and the viability in tumor osteoblasts (ROS 17/2.8 cells) after 48 h. Furthermore, QUE (100 μM) decreased AKT(Ser473) and the pro-apoptotic protein BAD(Ser136) phosphorylation. In addition, the ERK1/2 phosphorylation increased leading to osteosarcoma cell death since pre-treatment with the MEK inhibitor PD98059 had reverted QUE effect. Altogether, these results indicate that low concentrations of QUE stimulate osteoblastogenesis but have no effect on the growth of tumor osteoblast cells, for which only high concentrations are efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.