Abstract

Besides their function of lipid storage, the adipose cells secrete a number of proteins of physiopathological importance. To get further insights into this function, which remains poorly characterized, we sought to compare the mechanisms and regulation of secretion of two individual proteins in the same cells. Leptin and angiotensinogen were chosen and assessed by radioimmunoassay and quantitative immunoblotting, respectively, in primary culture of epididymal adipose cells from young obese Zucker rats. Leptin was secreted at a steady rate of 4 ng/10(6) cells/h over 2-6 h. Despite secretion, leptin cellular content remained stable at 3 ng/10(6) cells. In contrast, the rate of angiotensinogen secretion decreased regularly from 45 arbitrary units/10(6) cells/h at 2 h, to half this value at 6 h, although cell content remained constant at 100 arbitrary units/10(6) cells. Inhibition of protein synthesis by cycloheximide depleted the cells from leptin, but not from angiotensinogen for up to 6 h. Insulin increased leptin secretion (+75%) and cell content (+70 %), without affecting angiotensinogen. Secretion of both proteins was inhibited by Golgi-disturbing agents, brefeldin A and monensin. The presence of brefeldin A led to a specific rise in leptin cell content, an effect inhibited by cycloheximide and enhanced by insulin (+80%). These data show that leptin and angiotensinogen are both secreted through Golgi-dependent pathways and that their respective intracellular pool exhibit distinct turn-over rate and insulin sensitivity. These characteristics might account for the differential response of these adipose proteins to variations in the systemic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.