Abstract

TNF receptor-associated factor 2 (TRAF2) is involved in different cellular processes including signal transduction and transcription regulation. We here provide evidence of a direct interaction between the TRAF domain of TRAF2 and the monosialotetrahexosylganglioside (GM1). Previously, we showed that the TRAF domain occurs mainly in a trimeric form in solution, but it can also exist as a stable monomer when in the nanomolar concentration range. Here, we report that the quaternary structure of the TRAF domain is also affected by pH changes, since a weakly acidic pH (5.5) favors the dissociation of the trimeric TRAF domain into stable monomers, as previously observed at neutral pH (7.6) with the diluted protein. The TRAF domain-GM1 binding was similar at pH 5.5 and 7.6, suggesting that GM1 interacts with both the trimeric and monomeric forms of the protein. However, only the monomeric protein appeared to cause membrane deformation and inward vesiculation in GM1-containing giant unilamellar vesicles (GUVs). The formation of complexes between GM1 and TRAF2, or its TRAF domain, was also observed in cultured human leukemic HAP1 cells expressing either the truncated TRAF domain or the endogenous full length TRAF2. The GM1-protein complexes were observed after treatment with tunicamycin and were more concentrated in cells undergoing apoptosis, a condition which is known to cause cytoplasm acidification. These findings open the avenue for future studies aimed at deciphering the physiopathological relevance of the TRAF domain-GM1 interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.