Abstract

As an indispensable structure protein, the herpes simplex virus 1 (HSV-1) UL6 has been described to exert numerous roles in viral proliferation. However, its exact subcellular localization and subcellular transport mechanism is not well known. In the present study, by utilizing confocal fluorescent microscopy, UL6 was shown to mainly locate in the nucleus in enhanced yellow fluorescent protein or Flag tag fused expression plasmid-transfected cells or HSV-1-infected cells, whereas its predicted nuclear localization signal was nonfunctional. In addition, by exploiting dominant negative mutant and inhibitor of different nuclear import receptors, as well as co-immunoprecipitation and RNA interference assays, UL6 was established to interact with importin α1, importin α7 and transportin-1 to mediate its nuclear translocation under the help of Ran-mediated GTP hydrolysis. Accordingly, these results will advance the knowledge of UL6-mediated biological significances in HSV-1 infection cycle.

Highlights

  • Herpes simplex virus 1 (HSV-1), a large nuclear duplicating DNA virus, is an epidemic human microbe that can provoke a lytic infection in the mucosal epithelial cells but a life-long latent infection in neurons

  • Recent studies showed that the tryptophan residues or putative leucine zipper of UL6 is crucial for its association with scaffold proteins, UL15 and UL28 proteins, as well as the incorporation of the portal into capsids [7,8,9,10]

  • UL6 was demonstrated to be transported to the nucleus through a Ran, importin α1, importin α7- and transportin-1-dependent nuclear import mechanism, which was predominantly mediated by importin α7 and transportin-1

Read more

Summary

Introduction

Herpes simplex virus 1 (HSV-1), a large nuclear duplicating DNA virus, is an epidemic human microbe that can provoke a lytic infection in the mucosal epithelial cells but a life-long latent infection in neurons. Subcellular localization of UL6 in the plasmid transfected and virus infected cells Plasmid encoding UL6 fused to the C-terminus of EYFP was constructed and transfected into COS-7 cells to test the subcellular localization of UL6, without the presence of other HSV1 constituents.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.