Abstract

The auw mutant allele of the aurea locus in tomato has previously been shown to cause deficiency for the phytochrome polypeptide (Parks et al. 1987). We have begun to characterize the molecular basis and consequences of this deficiency. Genomic Southern blot analysis indicates that there are at least two and probably more phytochrome polypeptide structural genes in tomato. RNA blot analysis shows that the auw mutant contains normal levels of phytochrome mRNA and in vitro translation of auw poly(A)+ RNA yields a phytochrome apoprotein that is quantitatively and qualitatively indistinguishable on SDS-polyacrylamide gels from that synthesized from wild-type RNA. These results indicate that the phytochrome deficiency in aurea is not the result of lack of expression of phytochrome genes but is more likely due to instability of the phytochrome polypeptide in planta. Possible reasons for such instability are discussed. Analysis of the molecular phenotype of aurea indicates that the phytochrome-mediated increase in the abundance of the mRNA encoding chlorophyll a/b binding protein (cab) is severely restricted in the mutant as compared with wild-type tomato. Thus, the auw strain exhibits defective photoregulation of gene expression consistent with its very reduced level of the phytochrome photoreceptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call