Abstract

The somatic and germinal behavior of the maize wx-B3 mutation indicates that this Ac allele rarely reverts. Endosperms containing wx-B3 display tiny and infrequent Wx revertant sectors while no significant reversion is detected when wx-B3 pollen is stained with I/KI. Previous studies of other transposable element alleles that revert infrequently have implicated low levels of element excision. Unlike these other alleles, the wx-B3 Ac element is indistinguishable from fully active Ac elements with respect to its structure, and its ability to transpose from the Wx gene or to trans-activate a Ds element. Characterization of somatic and germinal excision events lead us to conclude that excision of the wx-B3 Ac element almost always produces null alleles. Furthermore, the excellent correlation between the position of the wx-B3 mutation on the physical and genetic maps indicates that the Ac insertion is the only lesion of wx-B3. As a result, precise excision of this Ac should restore Wx function. The fact that revertant sectors and pollen grains are rare indicates that precise excision of Ac is also rare. The finding that the wx-B3 reversion frequency is comparable whether wx-B3 is hemizygous or over a wx allele with a wild-type insertion site illustrates a fundamental difference between the excision mechanisms of Ac and Drosophila P elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.