Abstract

Human SLC25A13 gene encodes citrin, the liver-type aspartate–glutamate carrier isoform 2, and SLC25A13 mutations lead to citrin deficiency (CD). The definitive diagnosis of CD relies on SLC25A13 analysis, but conventional DNA analysis could not identify all SLC25A13 mutations. We investigated transcriptional features of SLC25A13 gene in peripheral blood lymphocytes (PBLs) from CD patients and healthy volunteers. SLC25A13 mutations were explored by PCR/LA-PCR, PCR-RFLP and direct sequencing. SLC25A13 cDNA was amplified by RT-PCR, cloned and then sequenced. All diagnoses of the CD patients were confirmed, including a heterozygote of g.2T>C and an unknown mutation yielding an aberrant transcript r.16_212dup. Twenty-eight alternative splice variants (ASVs) were identified from normal SLC25A13 alleles. Among them, r.213_328del took account for 53.7%, the normal transcript r.=, 16.6%, and the remaining 26 novel ASVs, collectively 29.3%, of all cDNA clones. Moreover, similar ASVs, all reflecting corresponsive mutations, were detected from the mutated alleles. These results indicated that the normal SLC25A13 transcript could be cloned, and the abundance of the ASV r.213_328del predicted the existence of a constructively novel protein isoform for this gene in human PBLs. And, the 26 novel ASVs, along with the novel aberrant transcript r.16_212dup and the SNP g.2T>C, enriched the transcript/variation spectrum of SLC25A13 gene in human beings. The findings in this paper, for the first time, uncovered the marked transcript diversity of SLC25A13 gene in human PBLs, and suggested that cDNA cloning analysis of this gene in human PBLs might be a feasible tool for CD molecular diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call