Abstract

Streptococcus pneumoniae is an important bacterial pathogen responsible for respiratory infections, bacteraemia, and meningitis remains an important cause of disease and mortality in infants and younger children around the world, with penicillin being considered the drug of choice for the treatment of infections. However, penicillin-resistant S. pneumonia is now becoming endemic worldwide. In this study, a total of 80 pneumococcal isolates were collected from different clinical sources as well as normal flora. These isolates were subjected to antimicrobial susceptibility testing and MIC determination. The penicillin-binding proteins, pbp2b, were amplified by PCR, and they were sequenced. The genetic relationship of the penicillin-resistant isolates was performed by BOX PCR. Overall, 36 pneumococcal (45 %) isolates were found to be resistant to penicillin with different MICs. The majority of them (80 %) were intermediately resistant with MIC of 0.12-1 µg/ml, whereas 20 % of isolates were penicillin resistant with MICs of >2 µg/ml. The results identified seven groups which were based on the amino acid substitutions of pbp2b. Sequencing analysis revealed that the most prevalent mutation was the substitution of Adenine for Thymine at the position 445 which is next to the second PBP2b-conserved motif (SSN). This study indicates that resistance to penicillin appears to be dependent on specific mutations in pbp2b, and the substitution in S620 → T near to the third PBP2b-conserved motif appears to be important in developing highly antibiotic-resistant isolates. Moreover, there was a positive correlation between the mutations in pbp2b gene and MIC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call