Abstract

Root-colonizingPseudomonas putida WCS358 enhances growth of potato in part by producing under iron-limiting conditions a yellow-green, fluorescent siderophore designated pseudobactin 358. This siderophore efficiently complexes iron(III) in the rhizosphere, making it less available to certain endemic microorganisms, including phytopathogens, thus inhibiting their growth. At least 15 genes distributed over five gene clusters are required for the biosynthesis of pseudobactin 358. High-affinity iron(III) transport in strain WCS358 is initiated by an 86-kDa outer membrane receptor protein (PupA) which appears to be specific for ferric pseudobactin 358. PupA shares strong similarity with TonB-dependent receptor proteins ofEscherichia coli, which suggests a TonB-like protein in strain WCS358 is required for iron(III) transport. Strain WCS358 possesses a second uptake system for ferric pseudobactin 358 and structurally diverse ferric siderophores produced by other microorganisms. A second receptor gene (pupB) responsible for iron transport from pseudobactin BN7 or pseudobactin BN8 has been identified. The production of this and certain other ferric siderophore receptor proteins requires that strain WCS358 be grown in the presence of these siderophores. An apparent regulatory gene required for the expression ofpupB is located adjacent topupB. Two positive regulatory genes have been identified which can independently activate, under low-iron(III) conditions, transcription of genes coding for the biosynthesis of pseudobactin 358.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.