Abstract

AbstractMultidrug efflux transporters are normal constituents of bacterial cells. These transporters are major contributors to intrinsic resistance of bacteria to many anti-microbial agents. In clinical settings, exposure to antibiotics promotes the mutational overexpression of active or silent multidrug transporters, leading to increased antibiotic resistance without acquisition of multiple, specific resistance determinants. The paradoxical ability of multidrug transporters to recognize and efficiently expel from cells scores of dissimilar organic compounds has been in the focus of extensive research for many years. Several independent studies implied that the mechanistic basis of such ability lies in a distinctive locus of the transporter-substrate interaction: the multidrug transporters select and bind their substrates within the phospholipid bilayer. The recently reported high-resolution structure of a complete MsbA transporter of Escherichia coli provides a solid structural basis for these studies. Although the majority of multidrug transporters function as single-component pumps, major transporters of Gram-negative bacteria are organized as three-component structures. Special outer membrane channels and periplasmic proteins belonging to the membrane fusion protein family enable drug efflux across a Gram-negative two-membrane envelope, directly into the external medium. This minireview focuses on the current status of research in the field of multidrug efflux mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.