Abstract

Capreomycin, kanamycin, amikacin, and viomycin are drugs that are used to treat multidrug-resistant tuberculosis. Each inhibits translation, and cross-resistance to them is a concern during therapy. A recent study revealed that mutation of the tlyA gene, encoding a putative rRNA methyltransferase, confers capreomycin and viomycin resistance in Mycobacterium tuberculosis bacteria. Mutations in the 16S rRNA gene (rrs) have been associated with resistance to each of the drugs; however, reports of cross-resistance to the drugs have been variable. We investigated the role of rrs mutations in capreomycin resistance and examined the molecular basis of cross-resistance to the four drugs in M. tuberculosis laboratory-generated mutants and clinical isolates. Spontaneous mutants were generated to the drugs singularly and in combination by plating on medium containing one or two drugs. The frequencies of recovery of the mutants on single- and dual-drug plates were consistent with single-step mutations. The rrs genes of all mutants were sequenced, and the tlyA genes were sequenced for mutants selected on capreomycin, viomycin, or both; MICs of all four drugs were determined. Three rrs mutations (A1401G, C1402T, and G1484T) were found, and each was associated with a particular cross-resistance pattern. Similar mutations and cross-resistance patterns were found in drug-resistant clinical isolates. Overall, the data implicate rrs mutations as a molecular basis for resistance to each of the four drugs. Furthermore, the genotypic and phenotypic differences seen in the development of cross-resistance when M. tuberculosis bacteria were exposed to one or two drugs have implications for selection of treatment regimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.